from keras.models import Sequential from keras.layers import Activation, Dropout, Flatten, Dense from keras import backend as K from keras.preprocessing.sequence import pad_sequences from keras.preprocessing.image import ImageDataGenerator from keras.layers import Conv2D, MaxPooling2D import matplotlib.pyplot as plt import matplotlib.image as mpimg import cv2 import numpy as np img_width, img_height = 150, 150 train_data_dir = './UserflowPredictorSystem/predictor/datas/train' validation_data_dir = './UserflowPredictorSystem/predictor/datas/test' nb_train_samples = 2000 nb_validation_samples = 800 epochs = 100 batch_size = 16 if K.image_data_format() == 'channels_first': input_shape = (3, img_width, img_height) else: input_shape = (img_width, img_height, 3) def create_model(): model = Sequential() model.add(Conv2D(32, (3, 3), input_shape=input_shape)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(32, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(64)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(1)) model.add(Activation('sigmoid')) model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) return model def train_model(model): # this is the augmentation configuration we will use for training train_datagen = ImageDataGenerator( rescale=1. / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) # this is the augmentation configuration we will use for testing: # only rescaling test_datagen = ImageDataGenerator(rescale=1. / 255) train_generator = train_datagen.flow_from_directory( train_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='binary') validation_generator = test_datagen.flow_from_directory( validation_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='binary') model.fit_generator( train_generator, steps_per_epoch=nb_train_samples // batch_size, epochs=epochs, validation_data=validation_generator, validation_steps=nb_validation_samples // batch_size) model.save_weights('./UserflowPredictorSystem/first_try2.h5') return model def load_trained_model(weights_path): model = create_model() model.load_weights(weights_path) return model def predict(number, model): img = cv2.imread("./UserflowPredictorSystem/predictor/datas/test/" + str(number) + ".jpg") im = mpimg.imread("./UserflowPredictorSystem/predictor/datas/test/" + str(number) + ".jpg") plt.imshow(im) img = cv2.resize(img, (img_width,img_height)) img = img.reshape(1, img_width, img_height, 3) res = model.predict(img) if res == 1: print('DOG') else: print('CAT') model = create_model() model = train_model(model) import os os.getcwd() trained_model = load_trained_model("./UserflowPredictorSystem/first_try2.h5") trained_model.summary() import random predict(random.randint(1,12500), trained_model) predict('lolly', model) print(np.argmax(loaded_model.predict(img)))