from keras.models import Sequential from keras.layers import Activation, Dropout, Flatten, Dense from keras import backend as K from keras.preprocessing.sequence import pad_sequences from keras.preprocessing.image import ImageDataGenerator from keras.layers import Conv2D, MaxPooling2D import matplotlib.pyplot as plt import matplotlib.image as mpimg import cv2 import numpy as np import tensorflow as tf sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) #from keras.datasets import imdb #https://gist.github.com/fchollet/0830affa1f7f19fd47b06d4cf89ed44d img_width, img_height = 150, 150 train_data_dir = './datas/train' validation_data_dir = './datas/test' nb_train_samples = 2000 nb_validation_samples = 800 epochs = 10 batch_size = 16 if K.image_data_format() == 'channels_first': input_shape = (3, img_width, img_height) else: input_shape = (img_width, img_height, 3) model = Sequential() model.add(Conv2D(32, (3, 3), input_shape=input_shape)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(32, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(64)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(1)) model.add(Activation('sigmoid')) model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) # this is the augmentation configuration we will use for training train_datagen = ImageDataGenerator( rescale=1. / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) # this is the augmentation configuration we will use for testing: # only rescaling test_datagen = ImageDataGenerator(rescale=1. / 255) train_generator = train_datagen.flow_from_directory( train_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='binary') validation_generator = test_datagen.flow_from_directory( validation_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='binary') model.fit_generator( train_generator, steps_per_epoch=nb_train_samples // batch_size, epochs=epochs, validation_data=validation_generator, validation_steps=nb_validation_samples // batch_size) from tensorflow.python.client import device_lib print(device_lib.list_local_devices()) from keras import backend as K K.tensorflow_backend._get_available_gpus() model.save_weights('first_try.h5') model.summary() img = cv2.imread("./datas/test/27.jpg") im = mpimg.imread("./datas/test/27.jpg") plt.imshow(im) img = cv2.resize(img, (img_width,img_height)) print(img.shape) img = img.reshape(1, img_width, img_height, 3) print(img.shape) #print(np.argmax(loaded_model.predict(img))) print(model.predict(img)) K.tensorflow_backend._get_available_gpus() num_words = 10000 (X_train, y_train), (X_test, y_test) = loadDatas() maxlen = 500 X_train = pad_sequences(X_train, maxlen=maxlen) X_test = pad_sequences(X_test, maxlen=maxlen) from keras.layers import Flatten, LSTM from keras.layers.convolutional import Conv1D, MaxPooling1D model = Sequential() model.add(Embedding(num_words, 50, input_length=500)) model.add(Conv1D(filters=32, kernel_size=3, padding="same", activation="relu")) model.add(MaxPooling1D(pool_size=2)) model.add(LSTM(32, dropout=0.4)) model.add(Dense(1, activation="sigmoid")) model.summary() model.compile(loss="binary_crossentropy", optimizer="rmsprop", metrics=["accuracy"]) model.fit(X_train, y_train, batch_size=512, validation_split=0.2, epochs=5) model.evaluate(X_test, y_test)