Feat: UserflowDataGatherer send correct datas; Feat: UserflowPredictorWebserver receive data and create userflowmap

This commit is contained in:
Lorenzo Iovino 2019-04-10 23:24:01 +02:00
parent 6feb5af4d0
commit 9946f8c057
26 changed files with 3977 additions and 22 deletions

View file

@ -0,0 +1,6 @@
{
"cells": [],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 2
}

View file

@ -0,0 +1,121 @@
from keras.models import Sequential
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
from keras.preprocessing.sequence import pad_sequences
from keras.preprocessing.image import ImageDataGenerator
from keras.layers import Conv2D, MaxPooling2D
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import cv2
import numpy as np
img_width, img_height = 150, 150
train_data_dir = './UserflowPredictorSystem/predictor/datas/train'
validation_data_dir = './UserflowPredictorSystem/predictor/datas/test'
nb_train_samples = 2000
nb_validation_samples = 800
epochs = 100
batch_size = 16
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
def create_model():
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
return model
def train_model(model):
# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size)
model.save_weights('./UserflowPredictorSystem/first_try2.h5')
return model
def load_trained_model(weights_path):
model = create_model()
model.load_weights(weights_path)
return model
def predict(number, model):
img = cv2.imread("./UserflowPredictorSystem/predictor/datas/test/" + str(number) + ".jpg")
im = mpimg.imread("./UserflowPredictorSystem/predictor/datas/test/" + str(number) + ".jpg")
plt.imshow(im)
img = cv2.resize(img, (img_width,img_height))
img = img.reshape(1, img_width, img_height, 3)
res = model.predict(img)
if res == 1:
print('DOG')
else:
print('CAT')
model = create_model()
model = train_model(model)
import os
os.getcwd()
trained_model = load_trained_model("./UserflowPredictorSystem/first_try2.h5")
trained_model.summary()
import random
predict(random.randint(1,12500), trained_model)
predict('lolly', model)
print(np.argmax(loaded_model.predict(img)))

View file

@ -0,0 +1 @@
.

Binary file not shown.

Binary file not shown.