diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..20ae12e --- /dev/null +++ b/.gitignore @@ -0,0 +1 @@ +datas diff --git a/predictor/.ipynb_checkpoints/Untitled-checkpoint.ipynb b/predictor/.ipynb_checkpoints/Untitled-checkpoint.ipynb new file mode 100644 index 0000000..2fd6442 --- /dev/null +++ b/predictor/.ipynb_checkpoints/Untitled-checkpoint.ipynb @@ -0,0 +1,6 @@ +{ + "cells": [], + "metadata": {}, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/predictor/Predictor.py b/predictor/Predictor.py new file mode 100644 index 0000000..524683a --- /dev/null +++ b/predictor/Predictor.py @@ -0,0 +1,148 @@ + +from keras.models import Sequential +from keras.layers import Activation, Dropout, Flatten, Dense +from keras import backend as K +from keras.preprocessing.sequence import pad_sequences +from keras.preprocessing.image import ImageDataGenerator +from keras.layers import Conv2D, MaxPooling2D +import matplotlib.pyplot as plt +import matplotlib.image as mpimg +import cv2 +import numpy as np + +import tensorflow as tf +sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) + + + +#from keras.datasets import imdb + + + +#https://gist.github.com/fchollet/0830affa1f7f19fd47b06d4cf89ed44d + +img_width, img_height = 150, 150 +train_data_dir = './datas/train' +validation_data_dir = './datas/test' +nb_train_samples = 2000 +nb_validation_samples = 800 +epochs = 10 +batch_size = 16 + + +if K.image_data_format() == 'channels_first': + input_shape = (3, img_width, img_height) +else: + input_shape = (img_width, img_height, 3) + + +model = Sequential() +model.add(Conv2D(32, (3, 3), input_shape=input_shape)) +model.add(Activation('relu')) +model.add(MaxPooling2D(pool_size=(2, 2))) + +model.add(Conv2D(32, (3, 3))) +model.add(Activation('relu')) +model.add(MaxPooling2D(pool_size=(2, 2))) + +model.add(Conv2D(64, (3, 3))) +model.add(Activation('relu')) +model.add(MaxPooling2D(pool_size=(2, 2))) + +model.add(Flatten()) +model.add(Dense(64)) +model.add(Activation('relu')) +model.add(Dropout(0.5)) +model.add(Dense(1)) +model.add(Activation('sigmoid')) + + +model.compile(loss='binary_crossentropy', + optimizer='rmsprop', + metrics=['accuracy']) + +# this is the augmentation configuration we will use for training +train_datagen = ImageDataGenerator( + rescale=1. / 255, + shear_range=0.2, + zoom_range=0.2, + horizontal_flip=True) + +# this is the augmentation configuration we will use for testing: +# only rescaling +test_datagen = ImageDataGenerator(rescale=1. / 255) + +train_generator = train_datagen.flow_from_directory( + train_data_dir, + target_size=(img_width, img_height), + batch_size=batch_size, + class_mode='binary') + +validation_generator = test_datagen.flow_from_directory( + validation_data_dir, + target_size=(img_width, img_height), + batch_size=batch_size, + class_mode='binary') + +model.fit_generator( + train_generator, + steps_per_epoch=nb_train_samples // batch_size, + epochs=epochs, + validation_data=validation_generator, + validation_steps=nb_validation_samples // batch_size) + +from tensorflow.python.client import device_lib +print(device_lib.list_local_devices()) + +from keras import backend as K +K.tensorflow_backend._get_available_gpus() + +model.save_weights('first_try.h5') +model.summary() + +img = cv2.imread("./datas/test/27.jpg") +im = mpimg.imread("./datas/test/27.jpg") +plt.imshow(im) + +img = cv2.resize(img, (img_width,img_height)) +print(img.shape) +img = img.reshape(1, img_width, img_height, 3) + +print(img.shape) +#print(np.argmax(loaded_model.predict(img))) +print(model.predict(img)) + + + + + + + + +K.tensorflow_backend._get_available_gpus() + + +num_words = 10000 +(X_train, y_train), (X_test, y_test) = loadDatas() + +maxlen = 500 + +X_train = pad_sequences(X_train, maxlen=maxlen) +X_test = pad_sequences(X_test, maxlen=maxlen) + +from keras.layers import Flatten, LSTM +from keras.layers.convolutional import Conv1D, MaxPooling1D + +model = Sequential() +model.add(Embedding(num_words, 50, input_length=500)) +model.add(Conv1D(filters=32, kernel_size=3, padding="same", activation="relu")) +model.add(MaxPooling1D(pool_size=2)) +model.add(LSTM(32, dropout=0.4)) +model.add(Dense(1, activation="sigmoid")) + +model.summary() + +model.compile(loss="binary_crossentropy", optimizer="rmsprop", metrics=["accuracy"]) +model.fit(X_train, y_train, batch_size=512, validation_split=0.2, epochs=5) + +model.evaluate(X_test, y_test) diff --git a/predictor/Untitled.ipynb b/predictor/Untitled.ipynb new file mode 100644 index 0000000..a007458 --- /dev/null +++ b/predictor/Untitled.ipynb @@ -0,0 +1,53 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "\n", + "import tensorflow as tf\n", + "\n", + "sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))\n", + "print(sess)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/predictor/first_try.h5 b/predictor/first_try.h5 new file mode 100644 index 0000000..9452edc Binary files /dev/null and b/predictor/first_try.h5 differ