.
This commit is contained in:
parent
ae477fc3df
commit
0109aab0f5
15 changed files with 918 additions and 586 deletions
|
|
@ -8,15 +8,38 @@ import matplotlib.pyplot as plt
|
|||
import matplotlib.image as mpimg
|
||||
import cv2
|
||||
import numpy as np
|
||||
import os
|
||||
import shutil
|
||||
import random
|
||||
|
||||
img_width, img_height = 150, 150
|
||||
train_data_dir = './UserflowPredictorSystem/predictor/datas/train'
|
||||
validation_data_dir = './UserflowPredictorSystem/predictor/datas/test'
|
||||
train_data_dir = './Predictor/PredictorNeuralNetwork/datas/userflows/train/'
|
||||
validation_data_dir = './Predictor/PredictorNeuralNetwork/datas/userflows/test/'
|
||||
nb_train_samples = 2000
|
||||
nb_validation_samples = 800
|
||||
epochs = 100
|
||||
epochs = 20
|
||||
batch_size = 16
|
||||
|
||||
def copytree(src, dst, symlinks=False, ignore=None):
|
||||
for item in os.listdir(src):
|
||||
s = os.path.join(src, item)
|
||||
d = os.path.join(dst, item)
|
||||
if os.path.isdir(s):
|
||||
shutil.copytree(s, d, symlinks, ignore)
|
||||
else:
|
||||
shutil.copy2(s, d)
|
||||
|
||||
def populateDatas():
|
||||
copytree('./Predictor/PredictorWebService/trainingImages/virtual', './Predictor/PredictorNeuralNetwork/datas/userflows/train')
|
||||
offset = 0
|
||||
for folder in os.listdir('./Predictor/PredictorNeuralNetwork/datas/userflows/train'):
|
||||
numberOfFiles = len([name for name in os.listdir('./Predictor/PredictorNeuralNetwork/datas/userflows/train/' + folder)])
|
||||
numberOfTestFiles = int(numberOfFiles / 10)
|
||||
for idx in range(0,numberOfTestFiles):
|
||||
file = os.listdir('./Predictor/PredictorNeuralNetwork/datas/userflows/train/' + folder)[random.randint(0,numberOfTestFiles)]
|
||||
shutil.copy2("./Predictor/PredictorNeuralNetwork/datas/userflows/train/" + folder + "/" + file, './Predictor/PredictorNeuralNetwork/datas/userflows/test/' + str(idx + offset) + '.png')
|
||||
shutil.copy2("./Predictor/PredictorNeuralNetwork/datas/userflows/train/" + folder + "/" + file, './Predictor/PredictorNeuralNetwork/datas/userflows/test/' + str(idx + offset) + '_SEPARATOR.png')
|
||||
offset = numberOfTestFiles
|
||||
|
||||
if K.image_data_format() == 'channels_first':
|
||||
input_shape = (3, img_width, img_height)
|
||||
|
|
@ -45,7 +68,7 @@ def create_model():
|
|||
model.add(Activation('sigmoid'))
|
||||
|
||||
|
||||
model.compile(loss='binary_crossentropy',
|
||||
model.compile(loss='categorical_crossentropy',
|
||||
optimizer='rmsprop',
|
||||
metrics=['accuracy'])
|
||||
return model
|
||||
|
|
@ -66,13 +89,13 @@ def train_model(model):
|
|||
train_data_dir,
|
||||
target_size=(img_width, img_height),
|
||||
batch_size=batch_size,
|
||||
class_mode='binary')
|
||||
class_mode='categorical')
|
||||
|
||||
validation_generator = test_datagen.flow_from_directory(
|
||||
validation_data_dir,
|
||||
target_size=(img_width, img_height),
|
||||
batch_size=batch_size,
|
||||
class_mode='binary')
|
||||
class_mode='categorical')
|
||||
|
||||
model.fit_generator(
|
||||
train_generator,
|
||||
|
|
@ -81,7 +104,7 @@ def train_model(model):
|
|||
validation_data=validation_generator,
|
||||
validation_steps=nb_validation_samples // batch_size)
|
||||
|
||||
model.save_weights('./UserflowPredictorSystem/first_try2.h5')
|
||||
model.save_weights('./Predictor/PredictorNeuralNetwork/weights/userflows.h5')
|
||||
return model
|
||||
|
||||
|
||||
|
|
@ -93,29 +116,26 @@ def load_trained_model(weights_path):
|
|||
|
||||
|
||||
def predict(number, model):
|
||||
img = cv2.imread("./UserflowPredictorSystem/predictor/datas/test/" + str(number) + ".jpg")
|
||||
im = mpimg.imread("./UserflowPredictorSystem/predictor/datas/test/" + str(number) + ".jpg")
|
||||
img = cv2.imread("./Predictor/PredictorNeuralNetwork/datas/userflows/test/" + str(number) + ".png")
|
||||
im = mpimg.imread("./Predictor/PredictorNeuralNetwork/datas/userflows/test/" + str(number) + ".png")
|
||||
plt.imshow(im)
|
||||
img = cv2.resize(img, (img_width,img_height))
|
||||
img = img.reshape(1, img_width, img_height, 3)
|
||||
res = model.predict(img)
|
||||
if res == 1:
|
||||
print('DOG')
|
||||
else:
|
||||
print('CAT')
|
||||
print(res)
|
||||
|
||||
model = create_model()
|
||||
populateDatas()
|
||||
|
||||
model = train_model(model)
|
||||
|
||||
import os
|
||||
os.getcwd()
|
||||
|
||||
trained_model = load_trained_model("./UserflowPredictorSystem/first_try2.h5")
|
||||
trained_model = load_trained_model("./Predictor/PredictorNeuralNetwork/weights/userflows.h5")
|
||||
trained_model.summary()
|
||||
import random
|
||||
predict(random.randint(1,12500), trained_model)
|
||||
predict('lolly', model)
|
||||
num = random.randint(1,10)
|
||||
print(num)
|
||||
predict(num, trained_model)
|
||||
|
||||
|
||||
|
||||
print(np.argmax(loaded_model.predict(img)))
|
||||
print(np.argmax(trained_model.predict(img)))
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue