

Documentazione

Lorenzo Iovino
Laboratorio di Reti 2016/2017

Tabella dei contenuti

1​ Architettura del sistema………………………………………………...… 1

1.1 Overview generale
1.2 Message e Response

2​ Client .………….…………………………………………………..………. 2

2.1 Il client in breve
2.2 I servizi

2.4.1 AuthService
2.4.2 GameService
2.4.3 NotificationClientService

2.3 I tasks
2.5.1 InvitePlayers
2.5.2 WaitForPlayers
2.5.3 SendWords
2.5.4 WaitForScore
2.5.5 FetchHighscores
2.5.6 BeginMatch
2.5.7 JoinMatch

3​ Server……………………………………………………....………………. 3

3.1 Il server in breve
3.2 I servizi

3.2.1 AuthService
3.2.2 ReceiveWordsService
3.2.3 MessageService
3.2.4 NotificationService
3.2.5 JedisService

3.3 I tasks
3.3.1 CheckOnlineUsers
3.3.2 SendInvitations
3.3.3 SendMessageToAllPlayers
3.3.4 SendFinalScores
3.3.5 JoinMatch
3.3.6 TimeoutJoin
3.3.7 TimeoutMatch
3.3.8 GenerateLetters
3.3.9 ComputeScore
3.3.10 ComputeHighscores

3.3.11 TokenInvalid
3.3.12 MessageDispatcher

4​ Installazione...………………………………………...………………….. 4

4.1 Installazione degli applicativi
4.2 Esecuzione

1
Architettura del sistema

1.1 Overview Generale

Il sistema consiste di due applicativi software: il ​Client ​ed il ​Server​.

Il Client è di tipo ​thin​, quindi per sua natura gestisce solo l’interazione dell’utente con
l’interfaccia grafica e richiede i servizi del server attraverso una Application Programming
Interface (API).
Il Client è di tipo grafico ed è sviluppato con SWING, inoltre tutte le chiamate alle API sono
gestite in modo asincrono per favorire una migliore esperienza utente.

Il Server è un insieme di servizi i quali si occupano di implementare diverse funzionalità per il
funzionamento del gioco, la gestione degli utenti e la persistenza. Tutti i servizi sono ​threads
indipendenti tra di loro ed ogni servizio può lanciare l’esecuzione di vari ​task ​i quali sono le
unità di calcolo per la realizzazione delle funzionalità demandate dal client.

La API è realizzata utilizzando diverse tecnologie di rete:
RMI ​per l’autenticazione e il servizio di notifiche;
TCP ​per lo scambio dei messaggi di gestione del gioco
UDP ​per l’invio delle parole e dei punteggi

1.2 Message e Response
Le comunicazioni possono essere effettuate utilizzando due diversi modelli per descrivere i
messaggi.

I ​Message ​sono utilizzati per essere inviati su TCP e UDP una volta serializzati.

public class ​Message ​implements ​Serializable {
 ​public ​String ​sender​;
 public ​String ​message​;
 public ​DefaultListModel<String> ​data​;
 public ​String ​token​;

 public ​Message​(String message​, ​String sender​, ​String token​,
 DefaultListModel<String> data) {
 ​this​.​message ​= message​;
 this​.​sender ​= sender​;
 this​.​data ​= data​;
 this​.​token ​= token​;
 ​}
 public static ​Message ​toMessage​(String data)
 public ​String toString()
}

è possibile convertire dei dati in message e dei dati in stringa, mantenendo un formato
standard deciso nell’implementazione del metodo.

Le ​Response ​sono utilizzati per l’ RMI, ed utilizzato i dati strutturati in JSON, evitando
conversioni custom come nel caso dei Message.

public class ​Response ​implements ​Serializable{
 ​public ​String ​message​;
 public ​Integer ​code​;
 public ​JsonObject ​data​;

 public ​Response​(String message​, ​Integer code​, ​JsonObject data) {
 ​this​.​message ​= message​;
 this​.​code ​= code​;
 this​.​data ​= data​;
 ​}
}

Ovviamente entrambi i modelli sono interscambiabili, ma, nello sviluppo dell’ applicativo ho
preferito inserirli entrambi, utilizzando le ​Response ​con le RMI, in modo da simulare una
risposta API (stile REST) dove è presente un codice di errore, un message e i dati in formato
JSON e i ​Message ​per la comunicazione attraverso socket TCP e UDP di più basso livello.

2

Client

2.1 Il client in breve
Il client è un applicativo per desktop scritto in JAVA di tipo ​thin​, in quanto non mantiene in
memoria nessun tipo di informazione relativa al gioco se non quelle relative alla sessione
attuale.

Le chiamate alle API del client vengono effettuate attraverso degli ​swing​ ​workers ​che
permettono di non bloccare l’evoluzione dell’interfaccia grafica nel momento che si rimane in
attesa della risposta di una chiamata ad una API, così da risultare non bloccanti e quindi
favorire un'esperienza utente più fluida.

Per lo sviluppo del client è stato seguito il pattern di programmazione MVC in modo da
separare la logica di presentazione da quella di business.

Nel sorgente i files sono suddivisi in diversi packages:

1) pages​: implementano la logica di presentazione, concentrandosi sul visualizzare i
componenti della UI e gestire le transizioni.

2) controllers: ​forniscono metodi utilizzabili dalla logica di presentazione per richiedere i
servizi esposti dai ​services​.

3) services: ​si occupano di effettuare le chiamate vere e proprie ai modelli dei dati e al
server, in modo da rendere trasparente i dati e i metodi remoti ai ​controllers​.

4) tasks: ​vengono chiamati (per lo più dai ​services​) quando occorre eseguire operazioni
di calcolo asincrono.

5) ui: ​ gli elementi della user interface utilizzati per costruire le ​pages, ​implementati in
SWING.

2.2 I servizi

I servizi del client si occupano di creare una interfaccia per i controllers in modo da rendere
trasparente all’ interfaccia l’elaborazione dei dati e l’esecuzione di servizi sul server.

2.2.1 AuthService

 è il servizio che si occupa di fornire le funzionalità per il ​login​, il ​logout
e la ​registrazione ​degli utenti.
Il servizio, basato su RMI, fornisce una interfaccia ​IAuth ​sia al client che al server in modo
che entrambi possano implementarla.
Il servizio di authentication è esposto tramite registry dal server sull’ uri ​serverURI/auth.

2.2.2 GameService

fornisce le funzionalità per la gestione della sessione di gioco, wrappa il
modello e ne espone i metodi.

2.2.3 NotificationClientService

il servizio è fornito tramite RMI, l’unico metodo implementato lato
Client è il ​sendInvite​, che viene eseguito quando arriva l’invito per partecipare ad un match
da qualche altro giocatore.
L’arrivo di un nuovo invito chiama la ​beginMatch ​per dare la possibilità al giocatore di
partecipare alla partita.

2.2 I tasks

I tasks sono degli scripts che si occupano di portare a termine un certo obiettivo per poi
notificarlo a chi lo ha invocato.

La struttura:

I tasks del client implementano l’interfaccia ​SwingWorker ​la quale fornisce due metodi che
ho utilizzato per simulare un flusso di esecuzione e permettere di concatenare più task tra di
loro. Tutti i tasks sono quindi threads.

doInBackgrounds​: questo metodo contiene il lavoro da svolgere, che grazie alla natura dello
SwingWorker​ verrà svolto in modo asincrono rispetto all’evoluzione dell’ interfaccia grafica.

done: ​viene eseguito alla fine del ​doInBackgrounds​, in questo modo alla terminazione del
task posso eseguire un’altro task chiamandolo in questa sezione.

N.B. Per poter chiamare dei task in cascata ho passato al costruttore del task (dove
necessario) una callback di tipo ​Callable​ o ​SwingWorker ​che ho poi richiamato al ​done,
simulando un approccio funzionale.

2.3.1 InvitePlayers

Invita i giocatori del match creato spedendo un Message tramite TCP con:

message: “START_GAME”
sender: String usernameDelCreatoreDelMatch
token: String tokenDelCreatoreDelMAtch
data: DefaultListModel<String> listaDegliUsernameDegliInvitati

2.3.2 WaitForPlayers

Mette il gioco in attesa e attende che tutti i giocatori joinino.
Nell’attesa attiva legge il socket TCP aspettando un Message di tipo:

JOIN_TIMEOUT​: Si è verificato il timeout, annulla il match corrente e torna al menù
MATCH_NOT_AVAILABLE​:​ ​Il match a cui si vuole partecipare non è più disponibile a causa
di un timeout.
GAME_STARTED: Il gioco è pronto per iniziare, recupero le lettere e mi registro al multicast
per ricevere i punteggi alla fine.

Se il Message contiene un messaggio uguale a GAME_STARTED la callback che notifica
all’utente che il gioco è pronto viene eseguita.

2.3.3 SendWords

Invia le parole inserite durante la sessione di gioco spedendo un Message tramite UDP con:

message: “WORDS”
sender: String usernameDelCreatoreDelMatch
token: String tokenDelCreatoreDelMAtch
data: DefaultListModel<String> listaDelleParole

Alla fine richiama la callback WaitForScore.

2.3.4 WaitForScore

Resta in attesa di ricevere tramite Multicast UDP i punteggi finali.
Il Message da ricevere ha il messaggio uguale a FINALSCORE, che conterrà nella sezione
data ​i punteggi del match appena concluso.
Infine chiama la callback che conclude il gioco e visualizza la HighscoresPage (riutilizzo
dello stesso componente degli highscore per visualizzare i punteggi parziali del match)

2.3.5 FetchHighscores

Invia un Message tramite TCP per richiedere gli highscores con:

message: “FETCH_HIGHSCORES”
sender: String usernameDelCreatoreDelMatch
token: String tokenDelCreatoreDelMAtch
data: DefaultListModel<String> []

e attende la risposta di un Message con un messaggio uguale a “HIGHSCORES” che
conterrà nella sezione ​data ​i punteggi globali.
Infine chiama la callback che visualizza la HighscoresPage.

2.3.6 BeginMatch

Viene eseguito quando si riceve una notifica di un nuovo match.
Il task aggiunge il match alla pendingList e visualizza il dialog che permette di joinare.

2.3.7 JoinMatch
Il task procede all’ invio di un Message tramite TCP con messaggio uguale a JOIN_MATCH
con:

message: “JOIN_GAME”
sender: String usernameDelCreatoreDelMatch
token: String tokenDelCreatoreDelMAtch
data: DefaultListModel<String> IlNomeDelMatchDaJoinare

N.B. Il nome di un match da joinare corrisponde al nome utente del suo creatore.

3

Server

3.1 Il server in breve
Il server è un applicativo console scritto in JAVA, esso definisce le signature delle API
esponendo i servizi, si occupa di gestire le sessioni di gioco, mantiene lo stato del sistema e
ha un meccanismo per salvare alcune informazioni sul DB.

Il server alla sua esecuzione fa partire dei servizi (Services) ed occupa alcune porte.

Nome: AuthService Porta: 9999
Nome: JedisService Porta: 6379
Nome: MessageService Porta: 10000
Nome: NotificationService Porta: 20000
Nome: ReceiveWordsService Porta: 10001

Tutti i servizi sono Thread figli del processo Server e dipendono dal suo stato di
esecuzione..

Nel sorgente i files sono suddivisi in diversi packages:

1) models: ​rappresentano i modelli dei dati e forniscono i metodi per cambiarne e/o
ottenerne lo stato. La rappresentazione dei modelli usa strutture synchronized, quindi
è thread safe.

2) services: ​i servizi dell’applicazione, tutti runnati come Thread separati e indipendenti.
Essi implementano diverse funzionalità.

3) tasks: ​ come per il client, sono dei thread “usa e getta”, atti ad essere utilizzati per
eseguire calcoli e/o operazioni asincrone.

3.2 I servizi

I servizi del server implementano l’interfaccia API esposta ai client e alcuni meccanismi
richiamati dall’interno. Sono lanciati con thread separati, quindi non dipendono l’uno
dall’altro, questo significa che se un servizio si blocca gli altri continuano a funzionare.

3.2.1 AuthService

 è il servizio che si occupa di fornire le funzionalità per il ​login​, il ​logout
e la ​registrazione ​degli utenti.
Le sessioni valide vengono verificate con l’utilizzo di un token, inviato all’utente come
risposta del login (se effettuato con successo), il token deve essere inviato ad ogni
successiva richiesta.
Il servizio è esposto tramite registry dal server sull’ uri ​serverURI/auth.

3.2.2 ReceiveWordsService

il servizio resta in attesa di ricevere delle parole dai client. Una
volta ricevute delle parole, delega al task ComputeScore il calcolo del valore.

3.2.3 MessageService

 resta in attesa di ricevere messaggi sul socket TCP e delegarne il
dispatchamento al task MessageDispatcher, che ne valuterà la natura e deciderà l’azione da
eseguire.

3.2.4 NotificationService

il servizio è basato su RMI e permette di inviare le notifiche ai
clients che si sono registrati alla callback, invocando il metodo remoto fornito dagli stessi
clients (​sendInvite​).

3.2.5 JedisService

è un servizio che si interfaccia con Redis (in-memory db) il quale è
in esecuzione sull'host (seguire i passi per l’installazione nella sezione 4).
Permette di salvare in memoria delle tuple <key,value> e successivamente accedervi. Viene
utilizzato per mantenere lo stato del Server ad ogni sua ri-esecuzione, ma, se si vuole
ottenere una persistenza dei dati anche allo spegnimento della macchina host, occorre
utilizzare un DB, mantenendo Redis come cache.

Note:
Ci sono molti DB che si interfacciano direttamente con Redis, quindi è uno sviluppo che si può realizzare anche
senza modificare il codice del Server, a piacere dell'amministratore della macchina host.
La chiave dove Redis memorizza i dati è “users” basterà effettuare un binding tra quella chiave e una tabella del
DB. Consiglio un db non relazionale (Es: MongoDB) per questo sviluppo futuro.

3.2 I tasks

Come per il client i tasks sono degli scripts che si occupano di portare a termine un certo
obiettivo per poi notificarlo a chi lo ha invocato.

La struttura:

I tasks del server implementano l’interfaccia ​Callable ​la quale fornisce il metodo ​call() ​che
conterrà le istruzioni per svolgere le operazioni richieste.

Alcuni task vengono lanciati e producono dei ​side effects ​su alcune proprietà synchronized
dell’istanza di un certo​ match​, questo garantisce che l’algoritmo eseguito sia thread safe
nonostante il flusso spezzato dai ​side effect.
Altri task invece aspettano un valore di risposta risultando bloccanti rispetto al flusso
(utilizzando la ​get() ​della ​Callable​).

La scelta nell’utilizzo di uno piuttosto che dell’altro approccio è guidata dal singolo caso di
utilizzo, in quanto a volte è necessario aspettare un certo valore o collezionare più valori
prima di proseguire con il flusso (Es: ​joinMatch​) e in altri casi è una semplice esecuzione di
un task a bassa priorità, il quale non importa che finisca in un istante ben preciso.

3.3.1 CheckOnlineUsers

Verifica che un utente sia presente tra gli utenti connessi (modello ​Sessions​), utilizzando
l’username come chiave per la ricerca.

Valore di ritorno ​true/false​ per l’attesa nel flusso e nessun side effect.

3.3.2 SendInvitations
Invia una notifica utilizzando il servizio NotificationService a tutti gli utenti che partecipano al
match.

Valore di ritorno ​true/false​ per l’attesa nel flusso e nessun side effect.

3.3.3 SendMessageToAllPlayers
Invia un messaggio di tipo Message tramite TCP a tutti gli utenti di un match (utilizzato per
inviare messaggi di servizio come per esempio il JOIN_TIMEOUT).

Valore di ritorno ​true/false​ per l’attesa nel flusso e nessun side effect.

3.3.4 SendFinalScores
Invia i punteggi finali in multicast a tutti i giocatori iscritti al gruppo multicast del match in
questione, quindi rimuove il match dai matches attivi (proprietà ​activeMatches ​di match).

Nessun valore di ritorno e nessun side effect.

3.3.5 JoinMatch
Modifica il match creato dal giocatore specificato nel Message alla voce ​sender​ aggiornando
il ​playerStatus​ del giocatore che joina ad 1 (0=non partecipa al match, 1=partecipa al match)
e il ​playerSocket ​con il valore del socket creato per la comunicazione con il giocatore.

Valore di ritorno ​true/false​ per l’attesa nel flusso, come side effect invece viene settato il
valore di ​joinTimeout a false ​solo se tutti i giocatori hanno correttamente joinato al match,
quindi prevenendo l’esecuzione del timeout con la conseguenza di cancellare il match.

3.3.6 TimeoutJoin
Setta il valore di ​joinTimeout ​del match in questione a ​true ​e si mette in attesa il Thread per
7 minuti.

Allo scadere dei 7 minuti si riverifica il valore di ​joinTimeout, ​se è rimasto ​true,​ allora il
timeout ha effetto, se invece è ​false ​(modificato dalla JoinMatch perchè tutti i giocatori hanno
joinato correttamente) si ignora il timeout.

Valore di ritorno ​true/false​ per l’attesa nel flusso, modifica della proprietà ​joinTimeout ​del
match come side effect.

3.3.7 TimeoutMatch
Quando il match inizia, viene inizializzato anche questo task, che resta in attesa per 5
minuti. Allo scadere del tempo si verifica se la proprietà ​matchTimeout ​del match in
questione è ​true ​e nel caso settare a 0 i punteggi dei giocatori che non hanno ancora inviato
le parole, quindi procedere con la terminazione del match inviando i finalScores.

La proprietà ​matchTimeout ​viene modificata a ​false ​quando tutti i giocatori hanno inviato le
loro parole.

Valore di ritorno ​true/false​, ma nessuna attesa nel flusso perché viene lanciato il task
SendFinalScore​.

3.3.8 GenerateLetters
Sceglie una parola a caso dal dizionario e ne restituisce la lista delle lettere

Valore di ritorno​ DefaultListModel<String> ​cioè la lista delle lettere e nessun side effect.

3.3.9 ComputeScore
Calcola il punteggio in base alle parole inviate.
Il punteggio è uguale all lunghezza della parola e solo se ritenuta valida, cioè presente nel
dizionario e non doppione.
Setta il punteggio dell’utente con quello calcolato e se è l’ultimo utente che invia le lettere,
allora termina il match settando la proprietà ​matchTimeout ​di match a ​false, ​settando a 0 il
punteggio degli utenti che hanno inviato una lista di parole vuota e chiamando il task
SendFinalScore.

Valore di ritorno ​score ​ma non utilizzato e nessun side effect.

3.3.10 ComputeHighscores
Legge i punteggi dei giocatori e li formatta come stringhe “username:score” per l’invio in un
Message ​tramite TCP con messaggio uguale a HIGHSCORES.

Valore di ritorno​ DefaultListModel<String> ​cioè la lista degli highscores e nessun side effect.

3.3.11 TokenInvalid
Invia il Message tramite TCP con messaggio uguale a TOKEN_NOT_VALID.

Nessun valore di ritorno e nessun side effect.

3.3.12 MessageDispatcher
Valuta il messaggio di un Message ricevuto come parametro ed esegue l’azione appropriata,
selezionando tra una delle azioni iniziali possibili nel flusso dei messaggi TCP.

I messaggi iniziali sono: START_GAME, FETCH_HIGHSCORES e JOIN_GAME.

Valore di ritorno ​true/false ​anche se non utilizzati e nessun side effect.

4

Installazione

4.1 Installazione degli applicativi

Prerequisiti software:

1) Java
a) Scaricare JAVA dal sito ​https://www.java.com/it/download/
b) Installare il pacchetto scaricato

2) Redis
a) Scaricare REDIS dal sito ​https://redis.io/download
b) Installare il pacchetto scaricato
c) Abilitare REDIS come servizio:

i) Su Windows 10:
(1) Premere Start
(2) Digitare “Servizi” e cliccare sull’icona “Servizi”
(3) Cercare nella lista il servizio “Redis Service”, cliccare con il

tasto destro del mouse e selezionare dal menù a tendina la
voce “Attiva”.

ii) Su Linux:
(1) Aprire un terminale ed eseguire: ​redis-server
(2) Verificare che redis sia partito digitando: ​redis-cli ping

https://www.java.com/it/download/
https://redis.io/download

4.2 Esecuzione

Esecuzione da Desktop Environment
Su windows:

I file distribuiti sono dei file jar, quindi su windows autoeseguibili cliccandoci sopra:
IMPORTANTE ​eseguire il server per primo!

1) Eseguire il server cliccando su ​Server_jar/Server.jar
2) Eseguire quanti client si vogliono cliccando su ​Client_jar/Client.jar

Esecuzione da Terminale
Su windows e su linux:

IMPORTANTE ​eseguire il server per primo!
1) Aprire un terminale
2) Portarsi nella cartella dell’ applicativo ​Server_jar ​ed eseguire

 ​ java -jar Server.jar
3) Portarsi nella cartella dell’ applicativo ​Client_jar​ ed eseguire

 ​ java -jar Client.jar

Nota:
Se il server non si esegue probabilmente è perchè qualche porta richiesta dal server è già
utilizzata da qualche altro servizio o da un'istanza del server stesso.
Per fixare quest’ultimo problema basta eseguire:

Su windows:

1) Ctrl-SHIFT-ESC
2) Cercare il processo del server dalla lista (ha l’icona di java)
3) Terminarlo

Su linux:

1) Aprire un terminale ed eseguire
 ​sudo kill -9 $(ps -a | grep Server | grep -v grep | awk ‘{print &1}’)

