Documentazione

Lorenzo lovino
Laboratorio di Reti 2016/2017

Tabella dei contenuti

1 Architettura del sistema. ... 1

1.1 Overview generale
1.2 Message e Response

2 Nt oo 2

2.1 ll client in breve

2.2 | servizi
2.4.1 AuthService
2.4.2 GameService
2.4.3 NotificationClientService

2.3 | tasks
2.5.1 InvitePlayers
2.5.2 WaitForPlayers
2.5.3 SendWords
2.5.4 WaitForScore
2.5.5 FetchHighscores
2.5.6 BeginMatch
2.5.7 JoinMatch

B S O VO .. 3

3.1 Il server in breve

3.2 | servizi
3.2.1 AuthService
3.2.2 ReceiveWordsService
3.2.3 MessageService
3.2.4 NotificationService
3.2.5 JedisService

3.3 I tasks
3.3.1 CheckOnlineUsers
3.3.2 SendInvitations
3.3.3 SendMessageToAllPlayers
3.3.4 SendFinalScores
3.3.5 JoinMatch
3.3.6 TimeoutJoin
3.3.7 TimeoutMatch
3.3.8 Generateletters
3.3.9 ComputeScore
3.3.10 ComputeHighscores

3.3.11 Tokenlnvalid
3.3.12 MessageDispatcher

4 INSEAllaZIONE. ...

4.1 Installazione degli applicativi
4.2 Esecuzione

1

Architettura del sistema

1.1 Overview Generale

Il sistema consiste di due applicativi software: il Client ed il Server.

Il Client & di tipo thin, quindi per sua natura gestisce solo I'interazione dell’'utente con
l'interfaccia grafica e richiede i servizi del server attraverso una Application Programming
Interface (API).

Il Client & di tipo grafico ed & sviluppato con SWING, inoltre tutte le chiamate alle APl sono
gestite in modo asincrono per favorire una migliore esperienza utente.

Il Server & un insieme di servizi i quali si occupano di implementare diverse funzionalita per il
funzionamento del gioco, la gestione degli utenti e la persistenza. Tutti i servizi sono threads
indipendenti tra di loro ed ogni servizio pud lanciare I'esecuzione di vari task i quali sono le
unita di calcolo per la realizzazione delle funzionalita demandate dal client.

La API & realizzata utilizzando diverse tecnologie di rete:
RMI per l'autenticazione e il servizio di notifiche;

TCP per lo scambio dei messaggi di gestione del gioco
UDP per l'invio delle parole e dei punteggi

Instance of

[Auh Servics

Game Service

Instance of

1.2 Message e Response

Le comunicazioni possono essere effettuate utilizzando due diversi modelli per descrivere i
messaggi.

| Message sono utilizzati per essere inviati su TCP e UDP una volta serializzati.

data

é possibile convertire dei dati in message e dei dati in stringa, mantenendo un formato
standard deciso nell'implementazione del metodo.

Le Response sono utilizzati per I’ RMI, ed utilizzato i dati strutturati in JSON, evitando
conversioni custom come nel caso dei Message.

Ovviamente entrambi i modelli sono interscambiabili, ma, nello sviluppo dell’ applicativo ho
preferito inserirli entrambi, utilizzando le Response con le RMI, in modo da simulare una
risposta API (stile REST) dove & presente un codice di errore, un message e i dati in formato
JSON e i Message per la comunicazione attraverso socket TCP e UDP di piu basso livello.

2

Client

2.1 1l client in breve

Il client € un applicativo per desktop scritto in JAVA di tipo thin, in quanto non mantiene in
memoria nessun tipo di informazione relativa al gioco se non quelle relative alla sessione
attuale.

Le chiamate alle API del client vengono effettuate attraverso degli swing workers che
permettono di non bloccare I'evoluzione dell’interfaccia grafica nel momento che si rimane in
attesa della risposta di una chiamata ad una API, cosi da risultare non bloccanti e quindi
favorire un'esperienza utente piu fluida.

Per lo sviluppo del client & stato seguito il pattern di programmazione MVC in modo da
separare la logica di presentazione da quella di business.

Nel sorgente i files sono suddivisi in diversi packages:

1) pages: implementano la logica di presentazione, concentrandosi sul visualizzare i
componenti della Ul e gestire le transizioni.

2) controllers: forniscono metodi utilizzabili dalla logica di presentazione per richiedere i
servizi esposti dai services.

3) services: si occupano di effettuare le chiamate vere e proprie ai modelli dei dati e al
server, in modo da rendere trasparente i dati e i metodi remoti ai controllers.

4) tasks: vengono chiamati (per lo piu dai services) quando occorre eseguire operazioni
di calcolo asincrono.

5) ui: gli elementi della user interface utilizzati per costruire le pages, implementati in
SWING.

2.2 | servizi

| servizi del client si occupano di creare una interfaccia per i controllers in modo da rendere
trasparente all’ interfaccia I'elaborazione dei dati e 'esecuzione di servizi sul server.

2.2.1 AuthService

% Auth Service

e il servizio che si occupa di fornire le funzionalita per il login, il logout
e la registrazione degli utenti.
Il servizio, basato su RMI, fornisce una interfaccia /Auth sia al client che al server in modo
che entrambi possano implementarla.
Il servizio di authentication & esposto tramite registry dal server sull’ uri serverURI/auth.

2.2.2 GameService

m Game Service
fornisce le funzionalita per la gestione della sessione di gioco, wrappa |l
modello e ne espone i metodi.

2.2.3 NotificationClientService

Q Notification Service
il servizio & fornito tramite RMI, I'unico metodo implementato lato

Client & il sendinvite, che viene eseguito quando arriva l'invito per partecipare ad un match
da qualche altro giocatore.

L’arrivo di un nuovo invito chiama la beginMatch per dare la possibilita al giocatore di
partecipare alla partita.

2.2 | tasks

| tasks sono degli scripts che si occupano di portare a termine un certo obiettivo per poi
notificarlo a chi lo ha invocato.

La struttura:

| tasks del client implementano l'interfaccia SwingWorker la quale fornisce due metodi che
ho utilizzato per simulare un flusso di esecuzione e permettere di concatenare piu task tra di
loro. Tutti i tasks sono quindi threads.

dolnBackgrounds: questo metodo contiene il lavoro da svolgere, che grazie alla natura dello
SwingWorker verra svolto in modo asincrono rispetto all’evoluzione dell’ interfaccia grafica.

done: viene eseguito alla fine del do/nBackgrounds, in questo modo alla terminazione del
task posso eseguire un’altro task chiamandolo in questa sezione.

N.B. Per poter chiamare dei task in cascata ho passato al costruttore del task (dove
necessario) una callback di tipo Callable o SwingWorker che ho poi richiamato al done,
simulando un approccio funzionale.

2.3.1 InvitePlayers

Invita i giocatori del match creato spedendo un Message tramite TCP con:

message: “START_GAME”

sender: String usernameDelCreatoreDelMatch

token: String tokenDelCreatoreDelMAtch

data: DefaultlListModel<String> listaDegliUsernameDegliInvitati

2.3.2 WaitForPlayers

Mette il gioco in attesa e attende che tutti i giocatori joinino.
Nell'attesa attiva legge il socket TCP aspettando un Message di tipo:

JOIN_TIMEOUT: Si & verificato il timeout, annulla il match corrente e torna al menu

MATCH _NOT_AVAILABLE: Il match a cui si vuole partecipare non & piu disponibile a causa
di un timeout.

GAME_STARTED: Il gioco & pronto per iniziare, recupero le lettere e mi registro al multicast
per ricevere i punteggi alla fine.

Se il Message contiene un messaggio uguale a GAME_STARTED la callback che notifica
all’'utente che il gioco € pronto viene eseguita.

2.3.3 SendWords

Invia le parole inserite durante la sessione di gioco spedendo un Message tramite UDP con:

message: “WORDS”

sender: String usernameDelCreatoreDelMatch
token: String tokenDelCreatoreDelMAtch

data: DefaultlListModel<String> listaDelleParole

Alla fine richiama la callback WaitForScore.

2.3.4 WaitForScore

Resta in attesa di ricevere tramite Multicast UDP i punteggi finali.

I Message da ricevere ha il messaggio uguale a FINALSCORE, che conterra nella sezione
data i punteggi del match appena concluso.

Infine chiama la callback che conclude il gioco e visualizza la HighscoresPage (riutilizzo
dello stesso componente degli highscore per visualizzare i punteggi parziali del match)

2.3.5 FetchHighscores

Invia un Message tramite TCP per richiedere gli highscores con:

message: “FETCH_HIGHSCORES”

sender: String usernameDelCreatoreDelMatch
token: String tokenDelCreatoreDelMAtch
data: DefaultListModel<String> []

e attende la risposta di un Message con un messaggio uguale a “HIGHSCORES” che
conterra nella sezione data i punteggi globali.
Infine chiama la callback che visualizza la HighscoresPage.

2.3.6 BeginMatch

Viene eseguito quando si riceve una notifica di un nuovo match.
Il task aggiunge il match alla pendingList e visualizza il dialog che permette di joinare.

2.3.7 JoinMatch

Il task procede all’ invio di un Message tramite TCP con messaggio uguale a JOIN_MATCH
con:

message: “JOIN_GAME”

sender: String usernameDelCreatoreDelMatch

token: String tokenDelCreatoreDelMAtch

data: DefaultListModel<String> I1NomeDelMatchDaJoinare

N.B. Il nome di un match da joinare corrisponde al nome utente del suo creatore.

Instance of

Menu

Register Match Setup Match Request Game Highscores

((_ Feteh Highscores

=) (=1 i ?u Auth Service

=
([sendWords
=\

Notification Service

[Fetcn Highscores.

’\ { Wait For Players

G (waltFor score Game Service

(— { Join match

Instance of

Server

3.1 1l server in breve

Il server & un applicativo console scritto in JAVA, esso definisce le signature delle API
esponendo i servizi, si occupa di gestire le sessioni di gioco, mantiene lo stato del sistema e
ha un meccanismo per salvare alcune informazioni sul DB.

Il server alla sua esecuzione fa partire dei servizi (Services) ed occupa alcune porte.

Nome: AuthService Porta: 9999
Nome: JedisService Porta: 6379
Nome: MessageService Porta: 10000
Nome: NotificationService Porta: 20000
Nome: ReceiveWordsService Porta: 10001

Tutti i servizi sono Thread figli del processo Server e dipendono dal suo stato di
esecuzione..

Nel sorgente i files sono suddivisi in diversi packages:

1) models: rappresentano i modelli dei dati e forniscono i metodi per cambiarne e/o
ottenerne lo stato. La rappresentazione dei modelli usa strutture synchronized, quindi
e thread safe.

2) services: i servizi dell'applicazione, tutti runnati come Thread separati e indipendenti.
Essi implementano diverse funzionalita.

3) tasks: come per il client, sono dei thread “usa e getta”, atti ad essere utilizzati per
eseguire calcoli e/o operazioni asincrone.

3.2 | servizi

| servizi del server implementano l'interfaccia AP| esposta ai client e alcuni meccanismi
richiamati dall'interno. Sono lanciati con thread separati, quindi non dipendono I'uno
dall’altro, questo significa che se un servizio si blocca gli altri continuano a funzionare.

3.2.1 AuthService

% Auth Service

e il servizio che si occupa di fornire le funzionalita per il login, il logout
e la registrazione degli utenti.
Le sessioni valide vengono verificate con l'utilizzo di un token, inviato all’'utente come
risposta del login (se effettuato con successo), il token deve essere inviato ad ogni
successiva richiesta.
Il servizio & esposto tramite registry dal server sull’ uri serverURI/auth.

3.2.2 ReceiveWordsService

Receive Words
@ Service
il servizio resta in attesa di ricevere delle parole dai client. Una

volta ricevute delle parole, delega al task ComputeScore il calcolo del valore.

3.2.3 MessageService

Message
Service
resta in attesa di ricevere messaggi sul socket TCP e delegarne il

dispatchamento al task MessageDispatcher, che ne valutera la natura e decidera I'azione da
eseguire.

3.2.4 NotificationService

Q Notification Service
il servizio € basato su RMI e permette di inviare le notifiche ai

clients che si sono registrati alla callback, invocando il metodo remoto fornito dagli stessi
clients (sendlnvite).

3.2.5 JedisService

é Jedis Service

€ un servizio che si interfaccia con Redis (in-memory db) il quale &
in esecuzione sull'host (seguire i passi per l'installazione nella sezione 4).
Permette di salvare in memoria delle tuple <key,value> e successivamente accedervi. Viene
utilizzato per mantenere lo stato del Server ad ogni sua ri-esecuzione, ma, se si vuole
ottenere una persistenza dei dati anche allo spegnimento della macchina host, occorre
utilizzare un DB, mantenendo Redis come cache.

Note:

Ci sono molti DB che si interfacciano direttamente con Redis, quindi € uno sviluppo che si puo realizzare anche
senza modificare il codice del Server, a piacere dell'amministratore della macchina host.

La chiave dove Redis memorizza i dati € “users” bastera effettuare un binding tra quella chiave e una tabella del
DB. Consiglio un db non relazionale (Es: MongoDB) per questo sviluppo futuro.

3.2 | tasks

Come per il client i tasks sono degli scripts che si occupano di portare a termine un certo
obiettivo per poi notificarlo a chi lo ha invocato.

La struttura:

| tasks del server implementano l'interfaccia Callable la quale fornisce il metodo call() che
conterra le istruzioni per svolgere le operazioni richieste.

Alcuni task vengono lanciati e producono dei side effects su alcune proprieta synchronized
dell'istanza di un certo match, questo garantisce che l'algoritmo eseguito sia thread safe
nonostante il flusso spezzato dai side effect.

Altri task invece aspettano un valore di risposta risultando bloccanti rispetto al flusso
(utilizzando la get() della Callable).

La scelta nell’utilizzo di uno piuttosto che dell’altro approccio € guidata dal singolo caso di
utilizzo, in quanto a volte &€ necessario aspettare un certo valore o collezionare piu valori
prima di proseguire con il flusso (Es: joinMatch) e in altri casi € una semplice esecuzione di
un task a bassa priorita, il quale non importa che finisca in un istante ben preciso.

3.3.1 CheckOnlineUsers

Verifica che un utente sia presente tra gli utenti connessi (modello Sessions), utilizzando
'username come chiave per la ricerca.

Valore di ritorno true/false per I'attesa nel flusso e nessun side effect.

3.3.2 SendiInvitations

Invia una notifica utilizzando il servizio NotificationService a tutti gli utenti che partecipano al
match.

Valore di ritorno true/false per I'attesa nel flusso e nessun side effect.

3.3.3 SendMessage ToAllPlayers

Invia un messaggio di tipo Message tramite TCP a tutti gli utenti di un match (utilizzato per
inviare messaggi di servizio come per esempio il JOIN_TIMEOUT).

Valore di ritorno true/false per I'attesa nel flusso e nessun side effect.

3.3.4 SendFinalScores
Invia i punteggi finali in multicast a tutti i giocatori iscritti al gruppo multicast del match in

questione, quindi rimuove il match dai matches attivi (proprieta activeMatches di match).

Nessun valore di ritorno e nessun side effect.

3.3.5 JoinMatch

Modifica il match creato dal giocatore specificato nel Message alla voce sender aggiornando
il playerStatus del giocatore che joina ad 1 (O=non partecipa al match, 1=partecipa al match)
e il playerSocket con il valore del socket creato per la comunicazione con il giocatore.

Valore di ritorno true/false per I'attesa nel flusso, come side effect invece viene settato |l
valore di joinTimeout a false solo se tutti i giocatori hanno correttamente joinato al match,
quindi prevenendo 'esecuzione del timeout con la conseguenza di cancellare il match.

3.3.6 TimeoutJoin

Setta il valore di joinTimeout del match in questione a frue e si mette in attesa il Thread per
7 minuti.

Allo scadere dei 7 minuti si riverifica il valore di joinTimeout, se é rimasto true, allora il
timeout ha effetto, se invece ¢ false (modificato dalla JoinMatch perché tutti i giocatori hanno
joinato correttamente) si ignora il timeout.

Valore di ritorno true/false per I'attesa nel flusso, modifica della proprieta joinTimeout del
match come side effect.

3.3.7 TimeoutMatch

Quando il match inizia, viene inizializzato anche questo task, che resta in attesa per 5
minuti. Allo scadere del tempo si verifica se la proprieta matchTimeout del match in
questione ¢é frue e nel caso settare a 0 i punteggi dei giocatori che non hanno ancora inviato
le parole, quindi procedere con la terminazione del match inviando i finalScores.

La proprieta matchTimeout viene modificata a false quando tutti i giocatori hanno inviato le
loro parole.

Valore di ritorno true/false, ma nessuna attesa nel flusso perché viene lanciato il task
SendFinalScore.

3.3.8 Generatel etters

Sceglie una parola a caso dal dizionario e ne restituisce la lista delle lettere

Valore di ritorno DefaultListModel<String> cioé la lista delle lettere e nessun side effect.

3.3.9 ComputeScore

Calcola il punteggio in base alle parole inviate.

Il punteggio & uguale all lunghezza della parola e solo se ritenuta valida, cioé presente nel
dizionario e non doppione.

Setta il punteggio dell’'utente con quello calcolato e se & I'ultimo utente che invia le lettere,
allora termina il match settando la proprieta matchTimeout di match a false, settando a 0O il
punteggio degli utenti che hanno inviato una lista di parole vuota e chiamando il task
SendFinalScore.

Valore di ritorno score ma non utilizzato e nessun side effect.

3.3.10 ComputeHighscores

Legge i punteggi dei giocatori e li formatta come stringhe “username:score” per I'invio in un
Message tramite TCP con messaggio uguale a HHGHSCORES.

Valore di ritorno DefaultListModel<String> cioé la lista degli highscores e nessun side effect.

3.3.11 Tokenlnvalid
Invia il Message tramite TCP con messaggio uguale a TOKEN_NOT_VALID.

Nessun valore di ritorno e nessun side effect.

3.3.12 MessageDispatcher

Valuta il messaggio di un Message ricevuto come parametro ed esegue 'azione appropriata,
selezionando tra una delle azioni iniziali possibili nel flusso dei messaggi TCP.

| messaggi iniziali sono: START_GAME, FETCH_HIGHSCORES e JOIN_GAME.

Valore di ritorno true/false anche se non utilizzati e nessun side effect.

Jedis Service

Auth Service

Message
Service

4

Installazione

4.1 Installazione degli applicativi

Prerequisiti software:

1) Java
a) Scaricare JAVA dal sito https://www.java.com/it/download/
b) Installare il pacchetto scaricato

2) Redis
a) Scaricare REDIS dal sito https://redis.io/download
b) Installare il pacchetto scaricato
c) Abilitare REDIS come servizio:

i) Su Windows 10:

(1) Premere Start

(2) Digitare “Servizi” e cliccare sull'icona “Servizi”

(3) Cercare nella lista il servizio “Redis Service”, cliccare con il
tasto destro del mouse e selezionare dal menu a tendina la
voce “Attiva”.

i) Su Linux:
(1) Aprire un terminale ed eseguire: redis-server
(2) Verificare che redis sia partito digitando: redis-cli ping

https://www.java.com/it/download/
https://redis.io/download

4.2 Esecuzione

Esecuzione da Desktop Environment
Su windows:
| file distribuiti sono dei file jar, quindi su windows autoeseguibili cliccandoci sopra:
IMPORTANTE eseguire il server per primo!
1) Eseguire il server cliccando su Server_jar/Server.jar
2) Eseguire quanti client si vogliono cliccando su Client_jar/Client.jar

Esecuzione da Terminale
Su windows e su linux:
IMPORTANTE eseguire il server per primo!
1) Aprire un terminale
2) Portarsi nella cartella dell’ applicativo Server_jar ed eseguire
java -jar Server.jar
3) Portarsi nella cartella dell’ applicativo Client_jar ed eseguire
java -jar Client.jar

Nota:

Se il server non si esegue probabilmente & perché qualche porta richiesta dal server & gia
utilizzata da qualche altro servizio o da un'istanza del server stesso.

Per fixare quest'ultimo problema basta eseguire:

Su windows:
1) Ctrl-SHIFT-ESC
2) Cercare il processo del server dalla lista (ha I'icona di java)
3) Terminarlo

Su linux:
1) Aprire un terminale ed eseguire
sudo kill -9 $(ps -a | grep Server | grep -v grep | awk {print &1}")

